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In [2. 3], we have constructed a set of polynomial solutions {u,(x, t;¢)}
for the equation
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which we call generalized Helmholtz polynomials. As ¢ — 0, this set of
polynomials reduces to the heat polynomials of
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as developed by Rosenbloom and Widder [5].

We have shown [2, p. 1017 that every solution u(x, ¢) of (1) in >0,
continuous in >0, whose boundary data u(x,0)=¢(x) is an entire
function of growth (1, ) with ¢ < 1/2¢, can be expanded as

ulx, 1y= Y a,u,lx, t¢) (4)
n =0

converging absolutely for >0, with a, = (1/n!) ¢""(0). For 0 <e<eg,, and
(x, 1) in any compact subset of the region of convergence, the series (4)
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converges uniformly. This shows the stability of this class of solutions
under the singular perturbations of the type exhibited by (1).
Let 1 =¢y. Equation (1) is transformed into

St = (5)

where a(x, v)=u(x, ey)=ulx, 1). If we let #(x, ) represent the concen-
tration of a gas moving in a given stationary stream with constant velocity
1/¢ along the y-axis, Eq. (5) can be interpreted as the diffusion equation of
gases in a moving medium with diffusion constant equal to one. The
further transformation & = ve’" leads to

—0v=0 (6)

=

el ~7
v 1
PY

(
M
Xt 0yt 4

which is the Helmholtz equation [6, p. 466].

In this note we shall show that {u,(x, #;¢)} is complete in the maximum
norm over any simply connected compact subset in the plane, and
provides, after an appropriate transformation, a complete set of solutions
for the elliptic equation
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where «. b, ¢, d, e, and [ are constants.
Let R=[(x.1)] —a<x<a, 0<t<T! and let R denote the closure of R.
Then, we have the following.

THEOREM L. Let ue C*(R)n C(R) be a solution of (1) in R. Then for
&> 0. there exist a positive integer N and constants ¢, ¢, ¢y such that
N

max (u(x, 1) — Y cudx, 1e)| <o (8)
R k=0

Proof.  The proof is carried out in several steps.
(A) By Weierstrass approximation theorem, there exists a
polynomial P(x, r) such that

max |u(x, t)— P(x, t)] <9/3. (9)
R

{B) By existence and uniqueness theorem of Dirichlet problem for
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the elliptic equation (1), we can find a solution w(x, 7) of (1) such that
w(x, 1) = P(x, t) on the boundary of R. Then, by the maximum principle,

max |ulx, 1) —w(x, 1)) <3/3. (10)
R

(C) Let w(—a, t)=XY_,b,t" wlat)=%¥_,a,t”. We look for a
solution v(x, 1) of (1) such that v(—a, t)=w(—a,t), vla, t)y=wla, t). To
this end, we set v(x, 1)=3_, v, (x) . Substituting ¢ into (1) yields the

following recurrence relation for v,,(x):
V=0, Val—a)=b,. Viula)=ay,:
Vie 1=MV,y, Vi il=ay=hby ., Vi lay=ay :
Vii= —e(m+ )m+2)V,  (x)+(m+ 1)V, ()
V.l—a)=b,, V,(a)=a,,, m=0,1.2... M—2.

The above boundary value problems always have unique polynomial
solutions V,{(x), m=0,1,2,.. M.

(D) Let g(x, t)=w(x, t)—v(x, f). Then g(x, 1) is a solution of (1)
which vanishes at x = +¢«, and assumes prescribed polynomial data at t =0
and 1 = T, respectively. The method of separation of variables is applicable
and the solution g(x, ¢) is given by

7.

glx, )=y (x,e™+ fB,e")sin @ (11)
a
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and x,, 8, are appropriate constants determined by the boundary data at
t=0 and t=T. Since the boundary data are analytic, the series (11) con-
verges absolutely and uniformly in R. Hence, there exists a partial sum
g.(x, 1) of g(x, 1) such that

max | g(x, 1) —g,(x. 1} < /3.
R

This implies

max jw(x, 1) —Q,(x, 1) <d/3 (12)
R
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where

nmx
O, (x.)=0v(x, 1) +Z (2,0 + B,e"") sin ——

i=1 a

is a solution of (1).
(E) It is easy to see that Q,(x, 1) is continuous in >=0. Moreover,

0.(x,0) is an entire function of growth (1, o) with ¢ <1/2¢. Hence, we
apply Theorem 6.6 in {2, p. 101] and obtain

0,(x. 1) }: a;  uilx, re) (13)

-0

where

120,
pn =775
X

S at (0, 0).

Using bounds for u,(x, #;¢)

Ll 1 6)] < 20" [kjep T el2am 33 forp<1/2¢
[3.p. 1997 (14)

and the growth condition for 4,

lim sup |a,,|"* (kje)=0 < 1/2¢  [2,p. 100]. (15)

k— x

The series (13) converges uniformly in R. Hence, there exist a positive
integer N and a,..... ay such that

N
max [Q,(x, 1) = Y« ulx, 1:6)| <d/3. (16)
R

k=0
Combining (10), (12), and (16), we get (§).
Remarks. (1) The method in this proof is similar to the one used by
Colton [1, p. 121] in the case of heat polynomials.
(ii) The theorem is also valid for any closed rectangle in the plane.

(iii) Using singular perturbation technique, Latta [4, p.458] has
proved that for any solution u(x, ¢) of the Dirichlet problem of (1) in the
unit square S={(x, 1)|0<x<1, 01 <1},

M(X.f):i a(x, )i <Z bo(x, 1)e >exp<"(lp—zt)>

k=0 k=0

+ O(EZN + Z)
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as ¢ — 0, uniformly in S, where a,(x, 1} and b,(x, 1) can be determined uni-
quely from the corresponding initial-boundary value problem for the heat
equation. It is clear in Theorem 1 that the error term involved for the
approximation also depends on £*¥* 2 as indicated in (2).

To extend Theorem | to any simply connected compact subsets in the
plane, we rely on the Runge approximation property possessed by
solutions of uniformly elliptic equation.

Consider

Llul=Au,  +2Bu .+ Cu, + Du, + FEu,+ Fu=0 (17)

where L is a uniformly elliptic operator with analytic coefficients A4, B, C,
D. E, and F. Solutions of L[u]=0 are said to have the Runge
approximation property if, whenever D, and D, are two bounded simply
connected domains, and D, is a subset of D,, any solution in D, can be
approximated uniformly on compact subsets of D, by a sequence of
solutions which can be extended as solutions to D,. It has been shown that
solutions of L[u] =0 possess the Runge approximation property by apply-
ing Holmgren’s uniqueness theorem [ 1, p. 66-69]. Hence, we have

THEOREM 2. Let D be a simply connected domain, and let u be a solution
of (1) in D. Then, for any 6 >0, and for any simply connected compact sub-
set Dy of D, there exists a positive integer N and constants aq,..., a  such that

N

max [u(x, 1) — Y, au(x, 1;e)| <3
Dy k=0

Proof. Choose a rectangle R such that D < R, and apply Remark (ii) of
Theorem 1 and Runge approximation property to solutions of (1) in D,.

Let u(x, 1) be a solution of (1). Define w(x, y)=u(x, 1)e 2 \where
= 1/22 and t=y/24i Then w(x, v} is a solution of

Wi+ W, —Aw=0. (18)

It follows from Theorem 2 that

wo(x, vy =u,(x, v/24 1/22) e (19)

is a complete set of solutions of (18) in any simply connected compact sub-
sets in the plane. For the general elliptic equation (7) with constant coef-
ficients, it is well known that there exists a linear transformation

x=p,{+pan. y=piC+pan, p; are constants (20)
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such that Eq. (7) 1s first carried into

02 o2 % %
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where %, ff, and y are constants.

If v — LYo +p3= —i7 <0, then (21) is further transformed into (18)
where (x, v)=w(x, 1) exp!{ —iax— 1Sy}

Since  w,(x.v) is complete for (18), then (S n)=w,(x, 1)
exp{ —sax —3ifiy} is a complete set for (7) where =g, x+g,
n=g,x+g; v is the inverse for (20). We summarize this in the following
theorem:

THEOREM 3. The set of functions {1, (. n)} is a complete system of
solutions for (7) with respect to uniform convergence in any simply connected
compact subsets in the & —n plane.
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